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I ABSTRACT 

A f i v e - s t e p  procedure was used i n  the 1990 performance simulations to 
construct probability distributions of the uncertain variables appearing in 
the mathematical models used to simulate the Waste Isolation Pi lo t :  Plant's 
(WIPP'S) ~erforrnance. This procedure provides a consistent approach to  the 
constructian of p r o b a b i l i t y  distributions in cases where empirical data 
concerning a variable are sparse or absent and minimizes the amount o f  
spurious information that i s  often introduced into a distribution by 
assumptions of nonspecialists.  The procedure gives f i r s t  p r i o r i t y  to the 
professional judgment of subject-matter experts and emphasizes the use of 
site-specific empirical. data for the construction o f  the p r o b a b i l i t y  
distributior~s when such data are avai lable .  In the absence of sufficient 
empirical data, the procedure employs the Maximum Entropy Formalism and the 

subject-matter experts' subject ive  estimates of t h e  parameters of the 
distribution t o  construct a distribution that can be used i n  a performance 
simulation 
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EXECUTIVE SUMMARY 

6 A five-step procedure w a s  used in the 1990 performance simulations to 
8 construct probability distributions of the uncertain variables appearing in 
9 the mat'hematical models used to simulate the Waste Isolation P i l o t  Plant's 

10 (WIPPrs) performance. Figure E - 1  summarizes the steps in  the procedure. 

This procedure provides a consistent approach to the construction of 
probability distributions fn cases where empirical data concerning a 
variable: are sparse or absent and minimizes the amount of spurious 
information that is often introduced into a distribution by assumptions of 
nonspeci,alists. The procedure gives first priority to the prafessional 
judgment, of subject-matter experts and emphasizes the use of site-specific 

empirical data for the construction of the  probability distributions when 
such data arc available. In the absence of sufficient empirical data, the 

,I -.,, 20 procedure employs the Maximum Entropy Formalism and the subject-matter 
i experts' subjective estimates of the parameters of the distribution to 
22 construct a distribution that can be used in a performance simulation. 

23 
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26 Figure E-1. The Five-Step Procedure Used to Construct Cumulative Distribution Functions (CDFs) for 
27 the 1990 Performance Simulations. RI refers to responsible investigator (I.e., subject- 
28 matter expert); MEF refers to the Maximum Entropy Formalism. 



1. INTRODUCTION 

The Waste Lsolation Pilot Plant (WTPP) is a research and development facility 
authorized by Congress (Public Law 9 6 - 1 6 4  [1980]) for the purpose of 
demonstrating the safe management, storage, and eventual disposal of those 
defense-ge,nerated transuranic (TRU) wastes that the U.S. Department of Energy 
(DOE) may designate as requiring deep geologic disposal. The DOE has 
established a program (hereinafter c a l l e d  the WIPP Project) to conduct the 
scientific and engineering investigations that are necessary for the 
demonstrations authorized by Congress. Further background on the WIPP and t h e  

WIPP Project can be found i n  U. S . DOE (1980) and U. S . DOE (1490) . 

The DOE will dispose of designated TRU wastes at the WIPP repository only 
after demo)~strating compliance with the requirements of the U.S. Environmental 
Protection Agency's (EPA's) Environmental Standards for  the  Management and 
Disposal o:F Spen t  Nuclear Fuel, High-Level and Transuranic Radioactive Wastes; 

Final Rule, 40 CFR Part 191 ,  (the Standard, EPA, 1985). The part of the 
Standard most relevant to this report, Subpart B or the "Environmental 
Standards :Tor Disposal," sets qualitative and numerical requirements on the 
postclosurn performance of the WIPP. (Although Subpart B of the Standard was 
remanded to the EPA by the United States Court of Appeals for the F i r s t  

Circuit, the WIPP Project will continue to respond to the Standard as first 
promulgateti until a new Standard is in place [U.S. DOE and State of New 
Mexico,  1 9 t l l l . )  In particular, the "Containment Requirements" In 5 191.13 of 
Subpart B set numerical limits on the likelihoods that cumulative releases o f  
radioactivj-ty from the WIPP System to the accessible environment, for 10,000 
years aftei: closure of the system, will exceed certain prescribed levels.  
Demonstrating compliance with the Standard is the same as establishing a 
reasonable assurance that the numerical limits on the likelihoods of the 
prescribed levels of release specified in the Containment Requirements will 
not be exceeded. Further background on the Containment Requirements can be 
found in the Standard and in Tierney (in prep.). 

In addition to specifying numerical limits, the Containment Requirements also 
suggest ia general approach to the testing of compliance with the numerical 
limits on t.he likelihoods of cumulative releases of radioactivity from the 
disposal system. The EPA calls this general approach "performance assessment" 
and  suggest.^ that, if practicable, its end-product should be an overall 
probability distribution of cumulative releases of radioactivity to the 
accessible environment. The published guidance for interpreting and 
implementing the Containment Requirements suggests that the overall 
probability distribution should take the form of a " .  . .  'complementary 
cumulative distribution function' that indicates the probability of exceeding 
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various levels of release" (EPA, 1985, Appendix B). In practice, estimators 
o f  such complementary cumulative distribution functions ( C C D F s )  are 

constructed by Monte Carlo simulations of the behavior of the total system 
during i ts  period o f  performance. Background on the uses of Monte Carlo 
simulation in performance assessment can be found in Tierney (in prep.). 

I 

Monte Carlo simulations of the WIPP System require three things: (1) a suite 
of mathematical models (usually implemented on a computer) that can predict 
the amount o f  radioactivity released from the WIPP System when it is subject 
to the geologic, anthropogenic, and climatic conditions that could prevail 
during the period of performance; (2) an identification of the independent 
variables that appear in the mathematical models; and (3) the assignment of 
probability distributions to the sensitive independent variables in a manner 
that reflects the state of knowledge about the likelihood of the actual values 
these variables may have in the real system (Tierney, in  p r e p . ) .  Background 
on the models used in the WIPP simulations can be found in Lappin  et al. 

(19891, Marietta et al. (1989), Rechard et al. (1990a) and other documents 
cited in these reports. Background on sensitivity studies of selected 
variables of WIPP-system models can be found in Rechard et al. (1990a). The 
present report is concerned with the procedures that were used in 1990 to 
provide item 3, an assignment of probability distributions to the important 
independent variables of the WIPP performance models. 

Purpose of This Report 

The WIPP Project has performed preliminary simulations of the WTPP System with 
the purpose of demonstrating the applicability of the methods and models it 
has developed for testing compliance with the Containment Requirements 
(Marietta et al., 1989). Rechard et al. (1990a, Appendix A) listed the 
approximately 240 distinct independent variables that could appear in the 
mathematical or computer-based models used in these simulations. Mast of 
these variables speci fy  the physical, chemical, or hydrologic properties of 
the rock formations in which the WIPP is placed; a substantial number of the 
variables specify physical or chemical properties of engineered inaterials and 
the waste form; some are the dimensions of engineered features of the 
facility, and some pertain t o  future climatic variability or future episodes 
of exploratory drilling at the WIPP. About 60 of the 240 variables are judged 
to warrant uncertainty analysis; preliminary ranges of variability are given 
for these variables in Append-ix A o f  Rechard et al. (1990a). 

Preliminary simulations of WIPP performance (Marietta et al., 1989) included 
up to 40 of the approximately 60 uncertain variables in the Latin hypercube 
sampling (LHS) scheme currently being used by the WIPP Project in its 
Compliance Assessment Methodology Controller (CAMCON, see Rechard et al., 
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1989). Bitckground on the assignment of probability density functions (PDFs) 
to these variables can be found in Appendix C of Marietta et al. (1989), No 
sys5ematic: procedures were used to assign PDFs to these variables: the 
distribut:.ons were assigned by WIPP analysts largely on the basis of limited 
data from Lappin et al. (1989), data from analogous (non-WIPP context) 
situationfi described In the literature and, in a f e w  instances, on the basis 
of the -prtrfessional judgment of subject-matter experts. Because the 
sirnulatioris of Marietta et al. (1989) were primarily made for demonstrational 
purposes, the lack of defensible and systematic procedures for the assignment 
of probabi.1iti.e~ in these studies was not a serious flaw. Subsequent review 
of this work clarified the need for such procedures in future simulations tha t  
would be ~ i s e d  to test compliance with the Containment Requirements. 

The preser~ t ,  brief report describes and rationalizes the systematic procedure 
that was [wed in 1990 by the WIPP Project to construct: probability 
distributl.ons (cumulative distribution functions [CDFs] or probability density 
functions [PDFs]) for the uncertain independent variables in the WIPP 
performance models. The procedure is described and applied to variables 
currently being sampled in the WIPP performance models in Chapter 11. 
Technical details of the procedure are also provided in Chapter 11. 

The 1990 ~srocedure is described in this report to elicit reviewer's comments 
and start the review cycle. The WIPP Project has been asked to perform 
iterative performance assessments semiannually, with annual documentation of 
these ass~ssments. A widely acceptable final compliance assessment depends on 
constructive feedback from peer reviewers of each annual assessment. This 
brief repcrt  is intended to focus some of the review efforts on a critical 
component of the performance-assessment process: construction of CDFs or FDFs. 

Issues Not Addressed in Thls Report 

Owing to limited information and time constraints, it has not been possible to 
address all the issues that are normally associated with the construction of 
probability distributions for a set of model variables. Important issues not 

treated or only mentioned here are 

(a)  Tke effects of possible dependencies among the different kinds of 
mcdel variables on the assignment of probab i l i t y  distributions to 
tk,ose variables ; 

(b)  T h e  r o l e  of spatial  correlations in constructing probability 
distributions for the variables of a lumped-parameter model; 

(c) The assignment of extreme-value probabilities to a variable on the 
basis of a limited number of observations of the variable; 
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(d) fie assignment of numerical probabilities to  parameters of natural and 

anthropogenic phenomena that may occur in  the far future. 

Because ~f the lack of information, WIPP Project analysts have assumed that 
a l l  of t ' n e  approximately 60 uncertain variables in their mathematical models 
are inde3endent (though not identically distributed) random variables. With 
one exce?tion (the lumped parameters specifying WIPP room hydraulic 
canductiqities and porosities), the possible effects of spatial correlations 
on reduclng the variances of the variables in  certaLn lumped-parameter 
performa:zce models have been ignored. Owing to limited data, the extrerne- 
value probabilities o f  most  of the sensitive variables cannot be estimated 
with g r e # ~ t  confidence. Finally, the problem of assigning probabil it ies  to the 
paramete:rs of processes and events that may occur at: the WIPP i n  the far 
future i:; only beginning to be addressed, The demonstrational performance 
simulati~~ns (Marietta et al., 1989) considered scenarios for climatic change 
and human intrusion at the WXPP in  which the climatic and intruston parameters 
were assigned fixed values. Current performance simulations have attempted to 
introductz uncertainty in  these parameters in  the s imples t  possible ways. For 
the parameters o f  the human-intrusion scenarios, see Appendix C of Tierney ( i n  

prep,  1. 

The f a c t  that issues (a) and (b) were not addressed in  the 1990 performance 
simulations severely l i m i t s  the val idi ty  of some of the CDFs  that were 

construc1:ed by the procedure described in this report; further discussion of 
these ist:ues is provided in  Chapter 111, 



I I .  PROCEDURES FOR CONSTRUCTING 
PROBABILITY DlSTRlBUTlONS 

An Outline of the Procedures 

In 1990,, the WIPP Project constructed probabi l i ty  distributtons for the 
uncertaf-n variables appearing in performance models of the WIPP System by 
fo l l owir lg  s t e p s  1 through 5 described below. Explanations of the meaning of 
underlined terms appearing in descriptions of the steps are deferred u n t i l  
later  sections o f  this chapter. The acronym RI, "responsible investigator," 
will hereinafter mean the Sandia National Laboratory investigator who is 
judged t o  se the expert in the subject matter of the variable. 

STEP 1 

Determine ::he existence of site-specific empirical data for rhe variable in 
question; : . . a , ,  find a documented set of site-specific sample values o f  the 
variable. If empirical data sets exist, go to Step 3; if no empirical data 
sets are fclund, go to Step 2. 

STEP 2 

Request chet the RIs supply a s p e c i f i c  shape ( e . g . ,  normal, lognormal, etc.) 
and associated numerical parameters for the distribution of the variable. If 

the RIs assign a specific shape and numerical parameters, go to Step 5 ;  if the 
RIs cannot assign a specific shape, go to S t e p  4 .  

STEP 3 

Determine t3e size of the combined empirical data sets, I f  the number of 
values in t'ne combined data set i s  >3, use the combined data to construct an 
ern~irical.c~rnulative distribution function or, alternatively, a piecewise- 

l i n e a r  cumulative distr ibut ion function, and then go to Srep 5. If the number 
of variable;; in rhe combined data set is 5 3 ,  go t o  Step 4. 

STEP 4 

Request thal: the RIs provide subjective estimates of (a)  the range of the 
variable (i,e., the minimum and maximum values taken by the  variable) and (b) 
i f  p o s s i b l e ,  one of the following (in decreasing order of preference): (1) 
percentile ~ l o i n t s  f o r  the distribution of the variable ( e . g . ,  the 25th,  50th,  
and 75th per,centiles),  ( 2 )  the mean value and standard deviation of the 
distributior, or (3) the mean value. Then, as justified by the Maximum 
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E n t r s y  Formalism (MEF), construct one of the following distributions - 
depending upon the kind of subjective estimate that has been provided and go 
to Ste:? 5. 

A uniform distribution (PDF) over the range of the variable. 

A &!cewise-linear CDF based on the subjective percentiles. 

A tr~mcated normal distribution based on the subjective range, mean value, 
and r tandard deviation. 

A trtncated exponential distribution based on the subjective range and mean 
val-ue . 

STEP 5 

End of procedures; distribution is assigned. 

This f i - f e - s t e p  procedure was motivated by a desire to maintain as close  a 
connection between situation-specific data/information and model parameters as 
possibll?. Though obviously not unique, the formulation of the procedure was 

guided l ~ y  two axioms: (1) a probability distribution describing a variable 
should, to the maxtmurn extent practicable, be constructed from empirical data 
and information that are site specific, and (2) if numerical data (i.e., 
sample values for the quantity) are few or nonexistent, probability 
d i s t r . i b ~ ~ t i o n s  for that quantity should be constructed using only those 
subjective but quantified judgments -about the quantity that are made by 
experts in the subject matcer pertaining to the quantity. It is assumed tha t  
a subject-matter expert will take account of all relevant information, site- 
specific or generic, in making subjective but quantified judgements about the 
shape of a variable's distribution. 

Axiom 1 recognizes that empirical, system-specific data - combined with 
proven. tneoretical concepts and informed, professional interpretation of the 
data -- 3re the only lfnk between the real system and the mathematical models 
that are being used to study the real system's behavior. The need for Axiom 2 
arises when, for various reasons, numerical data f o r  an independent variable 
of a modr?l are few or entirely absent (unfortunately, this is the situation 
for the ~ n a j o r i t y  of the uncertain independent variables in current WIPP 
performallce models). When data are lacking, professional judgment is all that 
is left; Axiom 2 ensures that only subjective information provided by persons 
with sget:ialized knowledge of the variable (usually, persons ocher than the 
perforaar~ce-assessment analyst) will be included in determining the form of 
the prabz.bility distribution. Adherence to Axiom 2 practically dictates the 
use of a particular method called the Maximum Entroav Formalism (MEF, see 
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below) for: constructing probability distributions from quantifiable subjective 
j udgmen t s . 

Empirical Cumulative Distribution Functions 

Suppose that one is given N > 3 sample values o f  an uncertain irtdependent 
variable X that appears i n  a WIPP performance model, 

In the remainder o f  this chapter, it is assumed t h a t  the X,s are independent, 

identical1,y distributed random variables with a common (but unknown) CDF that 
i s  here de,noted by F(x) .  Furthermore, since a11 of the WIPP performance-model 
variables ,are positive, it will be assumed that X is a non-negative variable; 
i . e . ,  X 2 I ) .  (The reader should nevertheless keep i n  mind the ways the 

assumption of independence could f a i l ,  e . g . ,  the poss ib i l i ty  of a biased 
sample arising from intervariable and spatial correlations among different 
kinds of vz~riables.  ) 

Upon ordarl.ng the sample data, one gets 

* * * * * * 
X I ,  X2, X3,  . . . ,  G, w i t h X  S X  , n - 1 ,  2 ,  3 ,  . a . j  N-1 

n nfl 

If X i s  nn intr ins ical ly  discrete variable, or i f  X i s  intr ins ical ly  
continuous and some of the X ~ S  are identical (perhaps owing t o  the precision 
with which the original X,s were measured), the ordered sample data can be 
grouped i n t ~  M r N ordered p a i r s ,  

where (XI , :c2 , . . .  XM) i s  the ordered set of distinct values among the X,s and 
the fms denote the mul t ip l i c i t i e s  of the Xms. For  example, if Xg appears 

three times in the data set, then Eg - 3 .  Clearly, 1 s Em< N, and 

As an example, one can take the 15 sample values of Culebra tortuosity cited 
in Table 1:-9 of Lappin et al, ( 1 9 8 9 ) ;  these values become the 12  ordered 

pairs: ( 0 . 0 3 , 1 ) ,  ( 0 . 0 4 , 1 ) ,  (0 .08,1) ,  ( 0 . 0 9 , 3 ) ,  (O.l0,1), ( 0 . 1 2 , 1 ) ,  (0.13,1), 
( 0 . 1 4 , 1 ) ,  ( 0 . 1 6 , 1 ) ,  (0.21,2),  (0 .29 ,1 ) ,  (0.33,l). 
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The .e~lirical percentiles p, associated w i t h  the sample data are defined as 

the ratio of the number of values in the set: (X, , 1 n 5 N) tha t  are less 
than 01. equal to x,, 1 5 m 5 M, t o  the t o t a l  number of  values in the s e t  

( I .  Using this  definition, it follows tha t  

The p,s are a nondecreasing sequence of numbers 5 1 with  p~ - 1 

The gm~irical cumulative distribution function (empirical CDF) associated w i t h  
the samn1)le d a t a  XI ,  X2, . . , ,  XN is the piecewise constant function here 
denoted by Fc(i$) and defined for f E [ O , m )  by 

The empirical CDF associated with the 15 sample values of corcuosi ty from 
Table E - 9  o f  Lappin et a l .  (1989) is drawn as the dotted curve on Figure 11-1. 

The empirical CDF Fc(f) is an unbiased est imator  ( s e e  Blom, 1989 ,  y. 194) o f  
the unknown distribution of the variable X (Blorn,  1989, p .  2 1 6 ) .  

The mean value or expected value of the variable X with respect to the 
empirical CDF F,(<) is  here denoted by ac and is the same as the usual 

sample ml?an, t ha t  i s ,  

M 
<x>, = (1/N) fmx, ; 

rn- 1 

hence .*., i s  an unbiased estimator of the expected value of the unknown 
d i s t r i bu t . i on  F(x). The expected value associated w i t h  the empirical CDF for 

t o r t u o s i t y  i n  Figure 11-1 is 0 .14 .  

The variance of the variable X with respect co the empirical CDF I?,(() is  here 

denoted by r2 and can be computed as follows: 
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I t This is n3t an unbiased estimator of the variance o f  X ,  but the quantity 
2 2 [ N / ( N - l ) ] , : c  (the usual sample variance) is an unbiased e s t i m a t o r .  The sc 

5 associated wich the empirical CDF f o r  the tortuasity data in  Figure 11-1 is 
6 6 . 9  x 10-'1 (hence the standard deviation sc = 0.083). 

Flgure 11-1. Eimpirical and Piecewise-Linear CDFs for Tortuosity Data. Dotted line is empirical CDF; solid 
line is Piecewise-Linear CDF. 

Piecewise-Llnear Cumulative Distribution Functions 

Use of an emptrical CDF in  practical Monte Carlo calculations may have some 
drawbacks. All of the sampling techniques used in Monte Carlo simulati.on 
( e . g . ,  random sampling, LHS) require the drawing of a number of random 

variates f rm each of the distribution functions for uncertain model 
variables. Inspection of the example empirical CDF shown in Figure  11-1 
reveals tha"rawing random variates from an empirical CDF will only give hack 

 he discrete  data points xl ,x2 , . . . ,  XM with respective frequencies f l / N ,  
f 2 /N ,  . . . ,  : ? M / N  as N -+ m .  Of course, this is the intended result when the 

variable .X :ls an intrinsically discrete random variable ( e . g . ,  Xn = n could be 
the ntunber of times an event occurs i n  a fixed period of time). But if the 

variable X i.s an intrinsically continuous variable ( e . g . ,  the spatial average 
of to r tuos i t :y  or porosity) and the points of the empirical data s e t  ( X,, 1 5  
n s N )  are f 'ew and sparsely placed on the real line, it is possible that the 
san~pled variates used in the simulations will always "miss" one or more of  
those cri1;ical values of X a t  which the output of the performance model could 
be particularly sensitive. For t h i s  reason, performance-assessment analysts 
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prefer t:o sample from continuous CDFs for those variables that are known to be 
conti~zucusly distributed. 

The empirical CDF described above can be modified and c a s t  into a continuous 
distrf ibt . t ion in  several ways. Perhaps the s i m p l e s t  way is to draw s t r a i g h t  
l i n e s  b~cween  the ver t ices  of the empir ical  CDF, i . e . ,  the points  ( 0 , 0 ) ,  

( x i ,  PI) , (x2 , p2) , . . . , ( x ~ ,  p ~ )  on the graph of the CDF (for example, see the 

so l id  lines s o  drawn on Figure 11-1 f o r  the t o r t u o s i t y  d a t a ) .  The piecewise- 
linear CDF constructed in this  way is here denoted by FJ(() and i s  --- 
a n a l y t i c a l l y  expressed by 

where po - 0 and xo = 0.  i 
Inspec,tion of the example shown on Figure 11-1 reveals that drawing random 
variat.es from a piecewise-linear CDF will give back a random selection of all 
of the values of the variable X that lie between 0 and XM, not just the 

o r i g i n a l  values XI, x2 ,  . . . ,  XM. The author has not  found or been able  to 
develop s proof that a piecewise-linear CDF constructed in this way i s  an 

unbiased es t imator  of the unknown distribution of the variable X .  1 
I 

1 
The mean value or expected value of-the CDF FJ([)  i s  here denoted by -1 and 
can be e:<pressed as 

i 

The varimce o f  the CDF FJ(<) is  denoted by s 2  and can be expressed as R 

The author has not found Qr been able  to  develop a proof t h a t  <X>j and s2 R 
are unbiz~sed estimators of the respective mean and variance o f  the unknown 
d1stribui:ion F(x). For the GDF for the tortuosity data shown on Figure  11-1, 

<X>J - 0 . 1 3  and s2 = 5 . 0  x 10-2.  R 
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It is somswhat surprising that the piecewise-linear CDF obtained by s i m p l y  
drawing straight lines between empirical-percentile points of an empirical CDF 

i s  the-saine distribution t h a t  is obtained by using the Maximum Entropy 
Formalism (MEF; t o  be discussed in the next section) and constraints specifled 
by empirical percentile points. 

The Maximum Entropy Formalism 

The l i t m a t u r e  on t he  Maximum Entropy Formalism (MEF) is now vast; the reader 
should consult the reviews edited by Levine and Tribus (1978), o r  the recent 
monograph by Jumarie (2990), f o r  thorough discussions of the foundations and 
areas of' a?plication of t h i s  subject. The MEF has been used before t o  
construct ; x i o r  p r o b a b i l i t y  distributions of uncertain variables in nuclear- 
risk asses:srnent models: See Cook and Unwin (1986) and Unwin et al. (1989). 

I n  t h i s  r epor t ,  the MEF is simply regarded as a consistent mathematical 
procedure f o r  the derivation of a probability distribution function f o r  an 

uncertain \.arfable, X, from a set of quantitative constraints on the form of 
that dis1:ribution; e . g . ,  quantitative statements about the range, the mean, 
the variance, or the percentiles of the d i s t r i b u t i o n .  The quan t i t a t ive  
cons t ra i r i t s  may be empi r i ca l  constraints, i . e .  constraints based on sample 
values of t h e  variable, or subjective constraints based on professional 

judgment . 

The central problem of the MEF is the determination of extrema of the so- 
called entz-4)~~ functional, defined by 

over the set of all probab i l i t y  density func t ions ,  E(x), which are nonzero i n  
the range [a,b] and which s a t i s f y  prescribed,  quan t i t a t ive  constraints. 

The entropy Eunctional is the continuous version of the information-theorecic 
entropy 

i . e , ,  i t  i i 3  the expected value of Shannon's measure, 

I(Xi) -k Bn Pi, k a constant , 
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of the amount of information gained by observing the outcome of an experiment 
in which a random variable Xi is observed to take on the value xi with 
p r o b a b i l i t y  Pi (Hamming 1991; Ch. 7 ) ,  The entropy functional has also been 
i n t e r p r e t e d  as a measure of t h e  amount of unce r t a in ty  inherent  in a PDF o r  as 

a measure of the amount of fnformation tha t  would be required to specify 
completely the value of a random variable X (for the idea that entropy is 
"missing" information, see Baie r l e in ,  1 9 7 1 ) .  Thus, finding an extremum of the 

e n t r l p y  functional subject t o  prescribed constraints can be construed as 

findtng the PDF, within the set of all PDFs that incorporate the information 

inhe:rent i n  the constraints, which maximizes the amount of remaining 
info::malion that must be supplied in order to completely specify t h e  value of  

the  lmcertain variable X .  Use of the MEF can minimize the amount of spurious 
info~:mation t h a t  often enters i n t o  the construction of a PDF from sparse data 
o r  l imi t ed  quantitative information. 

I 

The ~ r e s c r i b e d  informational constraints are best expressed as integral 

c o n s t r a i n t s  , i . e . , they should take the form 

where the gms are given,  integrable funct ions o f  x on the interval [a,b] and 

the C,ns  are given constants. One necessary c o n s t r a i n t  on  a PDF is t h a t  i t s  

integ.ral  over [ a , b ]  must equal one; thus one convent ional ly takes go- 1 and 
Co  - : L ,  By expressing the constraints in this  way, one can derive a general 

so1ut: lon t o  the problem ( i n  the calculus of variations) of maximizing S(f) 
subjec:t to the M - t l  constraints ( s e e ,  f o r  example, T r ibus ,  1969) .  The 
maximi.zing PDF, here denoted by f*(x) , is given by 

* -1 M 
f(x) a z  ? ? P 

P d where Z ' 1  is  the r e c i p r o c a l  of  Z and 

b 
M 

Z ( X I j  5, . . . ,  
m= 1 

81 The A,, 1 5 rn a M ,  ere constants (Lagrange multipliers) to be determined by 

s~ solvin,; the following set of M equations in M unknowns: 
61 

62 -(d/BXm)RnZ = C,, 1 5 m 5 M . 
63 
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The special forms of f*(x)  that arise from this formalism when the constra ints  
mentionell in the outline of the five-step procedure are appl ied  are of 
particulair interest : 

a .  Whm only the range of X i s  given ( i . e . ,  no constraints other than 
no:rmalization of  the P D F ) ,  then f*(x) is the uniform distribution on the 
inrerval [ a , b ] .  Obviously, this makes sense only i f  Ib-aJ < .o , i.e, 
thr: range of  the variable X i s  bounded. I 

b. Whim the range and M percentile points  of the CDF are given, then f*(x) 
is a weighted sum of M uniform distributions that vanishes outside the 
,rarige [a,bj and the associated CDF is piecewise l i nea r .  In this case, 

tht: M 2 1 constraints are of the form 

whwe u(-) i s  the unit step function (Abramowitz and Stegun, 1 9 6 4 ,  p .  
:LO;:O, 2 9 . 1 . 3 ) ,  the x,s are given percentile points in the interval 

[ a , b ] ,  and the p,s are the corresponding percentiles. 

c .  I4hc .n  the range, the mean value, and the variance ( o r  coefficient of 

val,lation) o f  the variable X are given, then f*{x) i s  a truncated normal 
dtstribution that vanishes outside the interval [a,b]. In this case, 
thc two constraints are of the form 

where p and 0 2  are respectively the given mean value and variance. 

d. When the range and only the mean value of  the variable X are given, then 
li*(x) is a truncated exponential distribution that vanishes outside the 
interval [a,b]. In this case, gl - x and C1 - p .  

Proofs of Cases a, c, and d can be found in  Tribus ( 1 9 6 9 ) .  The author has not 
been able to locate a proof of Case b and has therefore supplied h i s  own proof 
below. 

L e t  the. empirical or subjective percentile points be the given as M 2 1 

ordered p a i r s  ( x ~ , p l ) ,  (x2 , p 2 ) ,  . . , (XM,PM) with 
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and 0 < 11, < 1 for all m > 0. For convenience, define 

xo = a, PO = 0; X M + ~ =  b, p ~ + 1 =  1 . 

The cons.zraints on the candidate PDFs, f ( x ) ,  may then be w r i t t e n  a s  I 

where ,u(") is the unit s t e p  function (Abramowitz and Stegun, 1964, p .  1020). 
The PDF 1:hat maximizes the entropy funct ional  i s  therefore 

where ,the! Xms are constants t o  be determined f rom t h e  c o n s t r a i n t s .  
Inspecticln of t h i s  PDF shows that it i s  a piecewise-constant func t ion  on the 

i n t e r v a l  [a, b ]  ; i. e .  , f*(x) - A,, i f  x,. 1 < x 5 x,, with A, a dif ferent  
constant for each rn - 1, 2 ,  . . . ,  M+1. The constants A, are simply related to 

the consi:ants Am, and it is easier to determine the A,s from the 
c o n s t r a i r ~ t s  . For example, consider the in tegra l  of f*(x) between xm, 1 and 
x,. Th,is i n t e g r a l  is (x, - x,-l)A,,  but  by the constraints it is also equal 

to (pm - Pm- 1) . It follows that  

By in t ag l - a t ing  f*(x) - A,, m = 1,2, . . . , M+I , between xo = a and a p o i n t  < > 
a, one fj.nds the CDF associated with f*(x) : 

This r e s t . l t  is a piecewise-linear CDF of the kind described ea r l i e r  i n  this 

chapter. 

Once again, the reader should take note that i n  using t h e  MEF, the ranges, 
percen1;iles and percentile points ,  mean values, and variances to be supplied 
in Cases a through d can be either empirical or subjective numbers; tha t  is, 

they cfin be numbers derived from measurements of the variable X ,  o r  they can 

be furnished as  the "bes t  estimatestt of the RIs. Of course, if only 
subject:ive estimates are used to form the parameters of an MEF distribution, 
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it is  meaningless t o  inquire whether that distribution is an unbiased 
estimator of the  unknown distribution, F(x) .  The resulting distribution is 
pusely sub.jective and can only reflect the accuracy of the PIS' best estimates 
of the disl:ributiont s parameters. 

An Application of the Procedures 

The most recent simulations of WIPP performance used probability distributions 
obtained by the five-step procedure described above. The results of this 
first, informal trfal of the procedure are summarized in Table 11-1: column 1 
of the trible names the 29 variables that were sampled in the recent 
simulatians and gives t h e i r  physical units; column 2 names the kind of 
distributyion that was ultimately assigned; and column 3 briefly states the 
source of information and the bas is  for the assignment of the distribution 
named i n  column 2. 

In this first t r i a l  of the procedures, no formal elicitation o f  expert 
judgment of the type suggested by Bonano e t  al. (1990) was used. A memo was 
sent to WIP:? Project Rls in Department 6340 of Sandia National Laboratories 
asking that they provide any information they might have concerning each of 

the 29 variitbles; the requested information was t o  be supplied in one or more 
of the following forms and listed in order of decreasing preference on the 

part of the performance-assessment analyst: 

(1) A tiable of WIPP-specific, measured values of the variable. 

( 2 )  Reasosed estimates of percentile points for the variable; i . e .  the 
provision of statements like "90 percent of solubility values for 
radionuclide species  A l i e  below 10-4 molar."  

( 3 )  Reasoned estimates of the mean value and standard deviation of the 
vari-able . 

( 4 )  Reasonzd estimates of  only the mean value of the variable. 

(5)  A t  m i n i m ,  and always in addition to information of types  1 through 4 ,  
r e a s o x d  estimates of the maximurn and minimum values (range) t h a t  the  

variable could  assume in the context of the WIPP system. 

In addition ;o a written request for information, informal meetings were he ld  

with the PIS in  order t o  explain the purpose of the request f o r  information 

and to help 1;heLr understanding of some o f  the statistical terms used i n  the 
memorandum. These informal meetings revealed that some of the RIs were 



TABLE 11-1. PROBABlLlTY DISTRIBUTIONS FOR VARIABLES SAMPLED IN CURRENT WlPP PERFORMANCE SIMULATIONS* 

L'ariabie ~ a m e  and units 

- - - 

Type of Distribution Source or Basis for Distributiont 

1. Salado Capacitance (Pa-') Lognormal Assigned by RI. 

2. Salado Permeability (m3) Piecewise Linear MEF-empirical percentiles from data provided by RI. 

3. Salado Pressure (MPa) Uniform MEF-bound provided by RI. 

4. Room-Waste Solubility 
(all rad ionuclide species, kg /kg) Loguniform Assigned by R1. 

5. Room-Time of First Intrusion Modified Exponential Appendix C of Tierney (in prep.). 

6. Brine Pocket Initial Pressure (MPa) Piecewise Linear MEF-bounds and median provided by Rl. 

7. Borehde Permeability m2 Lognormal Freeze and Cherry, 1979. 

8. Borehole Porosity (dimensionless) Normal Freeze a d  Cherry, 1979. 

9. Brine Pocket Bulk Volume (m3) Uniform MEF-bounds provided by RI. 

10. Culebra Tortuosky (dimensionless) Piecewise Linear 

1 1 . Culebra Diffusion Coefficient 
(all radionudide species, mz/s) Uniform 

MEF-empirical percentiles from data in Tables E-9 of 
Lappin et al., 1989. 

MEF-bunds are maximum and minimum of values given 
in Table A-8 of Rechard et al., 1990a. 

12. Culebra Fracture Spacing (m) Piecewise Linear MEF-bounds and median provided by R1. 

* A complete description of the probability distributions for all variables us& in the 1990 perforrnam simulations can be found in 
Rechard et al. (I 990 b). 

t The Rls' responses that provided the sources or basis for each distribution are document& in Memos 3-1 1 and Letters 1 a and 1 b of 
Appendix A of Rechard et al. (1 990 b) . 



TABLE 11-1. PROBABIUTY DISTRIBUTIONS FOR VARIABLES SAMPLED IN CURRENT WlPP PERFORMANCE SIMULATIONS 
(concluded) 

Variable Name and Units Type of DIstHhrrtlrm S~u ize  Gi b s i s  fur Distribution 

13. Culebra Recharge Factor 
(dimensionless) Uniform Marietta et al., in prep. 

14. Culebra Precipitation factor 
(dimensionless) Uniform Marietta et at., in prep. 

15. Borehole cross-sectional area (m2) Empirimt Data provided by Rl. 

16-19. Culebra - Matrix Retardation 
Factors for Plutonium, Americium, 
Ne~tunium and Uranium 
(dimensionless) Piecewise Linear MEF-subjective percentiles (0,25,50, 75, 100) provided 

by R1. 

M-23. Culebra - Fracture Retardation 
Factors for Plutonium, Americium, 
Neptunium and Uranium 
(dimensionless) Piecewise Linear MEF-subjective percentiles (0,25, 50, 75, 100) provided 

by R1. 

24-29. Culebra Hydraulic Conductivity 
for Zones 1-7 (m/s) Piecewise Linear MEF-em pirical percentiles from data provided by R I. 
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confused abouc the meanings of the several measures of the shape of a 
probability d i s t r i b u t i o n  (Figure 11-21. In subsequent meetings, most of the 

RIs agreed tha t ,  in the absence of data, they could not  supply reasoned 
estimates of the mean value, p ,  or standard deviation, u ,  of the unknown 

distribution and that the measures of location they had previously called 

"expected values" were more likely to be estimates of the median value, x50, 
or the node, x,,,, of the distribution. 

If the LI provided the range ( a , b )  and an estimate of the median, x50, the MEF 

y i e lded  the s imple ,  piecewise-linear CDF i l l u s t r a t e d  i n  Figure 11-3. 
Providiilg a subjec t ive  estimate of the mode of an unknown PDF was discouraged. 
In the iibsence of additional information about the value of the PDF a t  the 

mode (information usual ly  not known to an R I ) ,  the use of  a subjective mode as 

a const1:aint in the MEF only gives back the uniform distribution over the 
range ( i ~ , b ) ,  the same distribution t h a t  arises if the range alone is 
speci.Eir!d. 
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Mode 1 Mean 

Median 

Figure 11-2. Typical PDF Showing the Different Measures of Location. 

a '50 
b x 

TRI-6342-667-0 

Figure 11-3. Piecewise-Linear CDF Based on Range and Median Value. 



Ill. LIMITATIONS ON THE 1990 
PROBABILITY DlSTRI BUTIONS 

The major limitations on the validity of the probabtlity distributions 
constructed for the 1990 performance simulations are believed to be the 
consequence of two things : 

(1) The effects of spatial averaging on the variance of model variables 
used i n  lumped-parameter models were ignored. 

(2)  Possible correlations between model variables were ignored. 

The Effects of Spatial Averaging 

Since most. of the WIPP performance models are lumped-parameter models, many of 
the variables to be assigned CDFs in the WIPP performance models are actually 
spatial averages of physical quantities that can only be measured an s p a t i a l  

scales that sre small compared with the spatial scale used i n  the models. For  
example, the effective hydraulic conductivity and porosity of a WIPP waste 

room (a st-ru-ture having a volume of the order of 1000 m3) are actually 
volumetric aaerages over the local hydraulic conductivi ty and porosity of 

appro xi mat el:^ 1000 consolidated waste units (collapsed waste barrels) each 
having volum~?s of the order of one cubic meter. The RL usually provides 
information ,ibout variability of a quantity on the smaller of the two spatial 
scales. It :is easy to show tha t  use of this  small-scale variability to 
reflect d i r e c t l y  the variance in the lumped-parameter model variable will 
result in uni~ecessarily conservative CDFs. Very roughly, the following 
relationship holds between the variance of a volumetric average and the 
variance of r:he "local," small-scale quantity: 

u 
2 2 
ave " (v/V>uloc 

where v is a correlation volume and V is the volume over which the local 

physical quailtity is to be averaged (analogous relationships hold for l inear  
and areal  av~?rages).  Although the precise size of the correlation volume is 
not known in every case, ir is usually known tha t  v << V. It follows that the 

variance of it volumetric average m a y  be much smaller than the  apparent 

variance of  .:he local quantity. On the o the r  hand,  t h e  mean value of the 

volumetric zrerage should be equal to the mean value of the local quantity. 
The picture 1 1 f  the PDF f o r  a spatial average that emerges from these remarks 
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is one c f  a distribution that  is sharply peaked about: the mean value o f  the 

local  quantity. In  the absence of other kinds of information indicating 
uncertainty in the mean value of the local quantity, it would be inefficient 
to  s a a p l e  from such a highly peaked distribution; the variable i n  question 
would simply be assigned the best estimate of the mean value of the local 
quant1 . t~ .  

Thus, in seeking more information about those model variables  that are known 
to be spatial averages of local quantities, it may be necessary to ask that 
experts ,?rovide scales of measurements and correlation lengths, and state 
thetr  estimate of the uncertainty in the mean value of the local quantity, in 
addition to  providing the observed or perceived variability of the local 
quantity i t s e l f .  

Correlations Between Model Variables 

All of the uncertain variables studied during the 1990 performance simulations 
were assumed to be independent random variables, although it was known i n  
advance that many of them were interdependent, i . e .  correlated in some way. 
Correlatj.ons of the model variables may arise from the fact t h a t  there are 
natura'l c.orrelations between the local  quantities used to determine the form 
of the mcldel variable ( e . g . ,  local porosity could be strongly correlated with 
local per,meability); or correlations of model var iables  may be implicit i n  the 
form of  the mathematical model in  which they are used. A s  an example of the 
latter circumstance, the current model for predicting WIPP-room hydraulic 
conduct;ivity and porosity (see Rechard 1990b, Chapter 111) makes these 
variables depend upon the volume f r a c t i o n s  of s p e c i f i c  waste forms ( i . e . ,  

fractions of combustibles, metall ics,  sludges, etc.) contained in the entire 
waste inventory. These volume fractions are obviously uncertain variables 
themselves even though they were not treated as variables i n  the 1990 

perforniance simulations, Taking account of the uncertainty in volume 
fractions would change estimates of the uncertainty i n  the mean value of the 
WIPP-room hydraulic conductivity and porosity. 

Correlatims among the important var iables  of the WIPP performance models need 
to  be examined in detail since these model-dependent correlations may either 
increase ,)r decrease the variance a£ a particular variable, and therefore 
effectively change the shape of that variable's CDF. 
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GLOSSARY 

ccdf - see complementary cumulative distribution function. 

cdf - see cumulative distribution function. 

comp1ementa1-y cumulative distribution function (CCDF) - One minus the 
cumulative distribution function. 

Culebra Dolc'mite Member - The lower of two layers of dolomire within the 
Rustler Fornation that are locally water bearing. 

cumulative distribution function - The sum (or integral as appropriate) of 
the probalrility of those values of a random variable that are l e s s  than or 
equal to a specified value. 

empirical - Selying explicitly upon or derived explicitly from observation or 

experiment. 

exponential distribution - A probabil i ty  distribution whose PDF i s  an 
exponential :?unction defined on the range of the vartahle in question. 

hydraulic coriductivity - The measure of the rate of f low of water through a 
unit cross-sectional area under a unit hydraulic gradient. 

lognormal dir:tribution - A probability distribution in which the logarithm of 
the variable in question follows a normal distribution. 

loguniform distribution - A probability distribution in which the logarithm 
of the  variable in question follows a uniform distribution. 

mean - The expectation of a random variable;  i . e . ,  the sum (or integral) of 

the product: of the variable and the PDF over the range of the variable. 

median - That value of a random variable at which its CDF takes the value 

0.5 ; i. e. , the 50th percentile point. 

mode - That v.slue of a random variable at which its PDF takes its maximum 

value. 

normal distril~ut-lon - A probability distribution in which the PDF is a 
symmetric, be::l-shaped curve of bounded amplitude extending from minus 

in£ inity to pLus infinity. 



Glossary 

PDF - see probability density function. 

porosity -. The percentage of total rock volume occupied by voids. 

p r o b a b i l f t : ~  density function - For a continuous random variable X, the 
function giving the probability that X lies in the interval x to x + dx 
centered cibout a s p e c i f i e d  value x .  

solubility - The equilibrium concentration of a solute when undissolved 
solute is in contact w i t h  the solution. 

subjective - The opposite of empirical: not supported by explicit records of 
rneasurelnents or experiments. 

tortuosity - A measure of the actual length of  the path o f  flow through a 

porous medium. 

truncated distribution - A probability distribution whose curve is defined on 
a range of variable values that is smaller than the range normally associated 

with the distribution: e . g . ,  a normal distribution defined on a f i n i t e  range 
of variable values. 

uniform distribution - A probab i l i t y  distribution i n  which the PDF is 

constant over the range of variable values. 

variance - The square of the standard deviation of a probability 

distribution; the standard deviation is a measure of the amount of spreading 
o f  a PDF about i ts  mean. 
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